WANG Lian Ping

Chair Professor
Email: wanglp@sustc.edu.cn
Office: Room 505, Block 7, Innovation Valley

Brief Introduction

Dr. Wang uses advanced simulation tools and theoretical methods to study turbulent multiphase flows and transport in engineering applications and environmental processes. His research covers direct and large-eddy simulations of turbulence and particle-laden flows, modeling and parameterizations of dispersion and turbulent collision of inertial particles, and simulation of interfacial multiphase flows. He develops and applies Boltzmann-equation based kinetic schemes, pseudo-spectral, and finite-difference / finite-volume methods for a variety of applications, as well as their scalable implementations on parallel computers. Dr. Wang has published over 116 journal papers. He is a Fellow of American Physical Society and a Fellow of American Society of Mechanical Engineers.

Research Interests

◆  Multiphase Flows
◆  Turbulent Flows
◆  Computational Fluid Dynamics
◆  Mesoscopic Methods
◆  High-Performance Computing

Please see this SciPod Link for Dr. Wang's research interests and recent accomplishments :  http://www.scipod.global/understanding-particle-fluid-interaction-dynamics-in-turbulent-flow-dr-lian-ping-wang-university-of-delaware/

Educational Background

◆  Ph.D. in Mechanical Engineering from Washington State University, USA, 1990
◆  B.S. in Mechanics, Zhejiang University, China, 1984

Professional Experience

◆  2018-present, Chair Professor, South University of Science and Technology 
◆  2009-present, Professor, University of Delaware, USA 
◆  2001-2009, Associate Professor, University of Delaware, USA 
◆  1994-2001, Assistant Professor, University of Delaware, USA 
◆  1992-1994, Research Associate, The Pennsylvania State University, USA 
◆  1990-1992, Visiting Research Associate, Brown University, USA 

Honors & Awards

◆  National One-Thousand Talents Program, 2017
◆  Fellow, American Society of Mechanical Engineers, 2016
◆  Invitation Fellow, Japan Society for the Promotion of Science, 2016
◆  Yangtze River Scholar Distinguished Professor (Visiting), China’s Ministry of Education, 2012
◆  Fellow, American Physical Society, 2011
◆  Distinguished Overseas Young Investigator Award, NSF of China, 2006
◆  Faculty Fellow, National Center for Atmospheric Research, 2005
◆  Francis Alison Young Scholars Award, University of Delaware, 1998
◆  Outstanding Teaching Award, University of Delaware, 1996

Selected Publication


◆  Peng C, Geneva N, Guo ZL, Wang L-P, 2017, Direct numerical simulation of turbulent pipe flow using the lattice Boltzmann method. J. Comp. Phys., accepted.

◆  Peng C, Guo ZL, Wang L-P, 2017, A lattice Boltzmann model capable of mesoscopic vorticity computation. Phys. Rev. E., accepted.

◆  Lin ZW, Yu ZS, Shao XM, Wang L-P, 2017, Effects of finite-size neutrally buoyant particles on the turbulent flows in a square duct. Phys. Fluids, 29, 103304. DOI: 10.1063/1.5002663

◆  Witte MK, Ayala O, Wang L-P, Bott A, and Chuang PY, 2017, Estimating collision-coalescence rates from in situ observations of marine stratocumulus. Quarterly J. Roy. Meteorol. Soc., accepted.

◆  Yu ZS, Lin ZW, Shao XM, Wang L-P, 2017, Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and the finite-size particles. Phys. Rev. E., 96, 033102. doi: 10.1103/PhysRevE.96.033102

◆  Geneva N, Peng C, Li XM, Wang L-P, 2017, A scalable interface-resolved simulation of particle-laden flow using the lattice Boltzmann method. Parallel Computing, 67: 20-37. doi: 10.1016/j.parco.2017.07.005

◆  Tao S, Guo ZL, Wang L-P, 2017, Numerical study on the sedimentation of single and multiple slippery particles in a Newtonian fluid.Powder Technology, 315: 126-138. doi: 10.1016/j.powtec.2017.03.039

◆  Bo YT, Wang P, Guo ZL, Wang L-P, 2017, DUGKS simulations of three-dimensional Taylor-Green vortex flow and turbulent channel flow.Computers & Fluids, 155: 9-21. doi: 10.1016/j.compfluid.2017.03.007

◆  Peng C, Geneva N, Guo ZL, Wang L-P, 2017, Issues associated with Galilean invariance on a moving solid boundary in the lattice Boltzmann method. Phys. Rev. E., 95, 013301. doi: 10.1103/PhysRevE.95.013301

◆  Wang L-P, Min HD, Peng C, Geneva N, Guo ZL, 2017, A lattice-Boltzmann scheme of the Navier-Stokes equation on a three-dimensional cuboid lattice. Computers and Mathematics with Applications, accepted. doi: 10.1016/j.camwa.2016.06.017

◆  Peng C, Guo ZL, Wang L-P, 2017, A lattice-BGK model for the Navier-Stokes equations based on a rectangular grid. Computers and Mathematics with Applications, accepted. doi: 10.1016/j.camwa.2016.05.007

◆  Min HD, Peng C, Guo ZL, Wang L-P, 2017, An inverse design analysis of mesoscopic implementation of non-uniform forcing in MRT lattice Boltzmann models. Computers and Mathematics with Applications, accepted. doi: 10.1016/j.camwa.2016.04.040

◆  Lin, ZW, Shao XM, Yu ZS, Wang L-P, 2017, Effects of finite-size heavy particles on the turbulent flows in a square duct. Journal of Hydrodynamics Ser. B., 29(2): 272-282.

◆  Wang P, Wang L-P, Guo ZL, 2016, Comparison of the lattice Boltzmann equation and discrete unified gas-kinetic scheme methods for DNS of decaying turbulent flows. Phys. Rev. E., 94, 043304. doi: 10.1103/PhysRevE.94.043304

◆  Peng C, Min HD, Guo ZL, Wang L-P, 2016, A hydrodynamically-consistent MRT lattice Boltzmann model on a 2D rectangular grid. J. Comp. Phys., 326: 893-912. doi: 10.1016/j.jcp.2016.09.031.

◆  Chen SY, Peng C, Teng YH, Wang L-P, Zhang K, 2016, Improving lattice Boltzmann simulation of moving particles in a viscous flow using local grid refinement. Computers and Fluids, 136: 228-246. doi: 10.1016/j.compfluid.2016.06.009

◆  Rosa B, Parishani H, Ayala O, Wang L-P, 2016, Settling velocity of small inertial particles in homogeneous isotropic turbulence from high-resolution DNS. Int. J. Multiphase Flow, 83: 217-231. doi: 10.1016/j.ijmultiphaseflow.2016.04.005

◆  Yu ZS, Lin ZW, Shao XM, Wang L-P, 2016, A parallel fictitious domain method for the interface-resolved simulation of particle-laden flows and its application to the turbulent channel flow, Engr. Appl. Comput. Fluid Mech., 10(1), 160-170, DOI: 10.1080/19942060.2015.1092268

◆  Wang L-P, Peng C, Guo ZL, Yu ZS, 2016, Flow modulation by finite-size neutrally buoyant particles in a turbulent channel flow. ASME J. Fluids Engr., 138: 041103. doi: 10.1115/1.4031691.

◆  Wang L-P, Ardila OGC, Ayala O, Gao H, Peng C, 2016, Study of Local Turbulence Profiles Relative to the Particle Surface in Particle-Laden Turbulent Flows. ASME J. Fluids Engr., 138: 041203, doi: 10.1115/1.4031692.

◆  Wang L-P, Peng C, Guo ZL, YU ZS, 2016, Lattice Boltzmann simulation of particle-laden turbulent channel flow. Computers and Fluids, 124: 226-236. doi:10.1016/j.compuid.2015.07.008

◆  Peng C, Teng, YH, Hwang B, Guo ZL, Wang L-P, 2016, Implementation issues and benchmarking of lattice Boltzmann method for moving rigid particle simulations in a viscous flow. Computers and Mathematics with Applications, 72: 349-374. doi: 10.1016/j.camwa.2015.08.027

◆  Zong Y, Peng C, Guo ZL, and Wang L-P, 2016, Designing correct fluid dynamics on a rectangular grid using MRT lattice Boltzmann approach.Computers and Mathematics with Application, 72, 288-310. doi: 10.1016/j.camwa.2015.05.021

◆  Parishani H, Ayala O, Rosa B, Wang L-P, and Grabowski WW, 2015, Effects of gravity on the acceleration and pair statistics of inertial particles in homogeneous isotropic turbulence. Physics of Fluids, 27: 033304. doi: 10.1063/1.4915121

◆  B Rosa, H Parishani, O Ayala, and L-P Wang, 2015, Effects of forcing time scale on the simulated turbulent flows and turbulent collision statistics of inertial particles. Physics of Fluids, 27: 015105. doi: 10.1063/1.4906334

◆  Wang L, Wang L-P, Guo ZL, Mi JC, 2015, Volume-averaged macroscopic equation for fluid flow in moving porous media. Int. J of Heat and Mass Transfer, 82: 357-368. doi: 10.1016/j.ijheatmasstransfer.2014.11.056

◆  Grabowski WW, Wang L-P, and Prabha TV, 2015, Macroscopic impacts of cloud and precipitation processes on maritime shallow convection as simulated by a large-eddy simulation model with bin microphysics. Atmos. Chem. Phys., 15: 913-926, doi:10.5194/acp-15-913-2015.

◆  Ayala O, Parishani H, Liu C, Rosa B, and Wang L-P, 2014, DNS of hydrodynamically interacting droplets in turbulent clouds: parallel implementation and scalability analysis using 2D domain decomposition.Computer Physics Communications, 185: 3269-3290. doi: 10.1016/j.cpc.2014.09.005

◆  Lee JH, Noh Y, Raasch S, Riechelmann T, Wang, L-P, 2014, Investigation of droplet dynamics in a convective cloud using a Lagrangian cloud model, Meteorology and Atmospheric Physics, 124:1-21. doi 10.1007/s00703-014-0311-y

◆  Wang L-P, Ayala O, Gao H, Andersen C, Mathews K. 2014, Study of forced turbulence and its modulation by finite-size solid particles using the lattice Boltzmann approach. Comput. & Math. with Applications, 67: 363-380. doi: 10.1016/j.camwa.2013.04.001

◆  Xie ML, He Q, Wang WX, Wang L-P, 2013, An exact solution of interception efficiency over a circular-arc fiber collector, Computers and Fluids, 88: 354-362. doi: 10.1016/j.compfluid.2013.09.025

◆  Lazouskaya V, Wang L-P, Or D, Wang G, Caplan JL, Jin Y, 2013, Colloid mobilization by fluid displacement fronts in channels, J Colloid & Interface Sci, 406: 44-50. doi: 10.1016/j.jcis.2013.05.078

◆  Wyszogrodzki AA, Grabowski WW, Wang L-P, and Ayala O, 2013,Turbulent collision-coalescence in maritime shallow convection. Atmos. Chem. Phys., 13, 8471-8487. doi:10.5194/acp-13-8471-2013

◆  Rosa B, Parishani H, Ayala O, Grabowski, WW, Wang L-P, 2013,Kinematic and dynamic collision statistics of cloud droplets from high-resolution simulations. New J. Phys., 15:045032. doi:10.1088/1367-2630/15/4/045032

◆  Torres CE, Parishani H, Ayala O, Rossi L, Wang L-P, 2013, Analysis and parallel implementation of a forced N-body problem. J. Comp. Phys., 245:235-258. doi: 10.1016/j.jcp.2013.03.008

◆  Xie ML and Wang L-P, 2013, Asymptotic solution of population balance equation based on TEMOM model. Chem. Eng. Sci., 94:79-83. doi: /10.1016/j.ces.2013.02.025

◆  Ayala O, Wang L-P, 2013, Parallel implementation and scalability analysis of 3D fast Fourier transform using 2D domain decomposition.Parallel Computing, 39:58-77. doi: 10.1016/j.parco.2012.12.002

◆  Liu X, Lu WB, Ayala, OM, Wang L-P, Karlsson, AM, Yang QS, Chou T-W, 2013, Microstructural revolution of carbon nanotube fibers: deformation and strength mechanism, Nanoscale, 5:2002-2008. doi:10.1039/c3nr32681k.

◆  Gao H, Li H, Wang L-P, 2013, Lattice Boltzmann Simulation of Turbulent Flow Laden with Finite-Size Particles, Computers & Mathematics with Applications, 65:194-210. doi:10.1016/j.camwa.2011.06.028.

◆  Grabowski WW, Wang L-P. 2013. Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech. (an invited review paper), 45:293-324. doi:10.1146/annurev-fluid-011212-140750